SGF Tree
试图将SGF文件变成树,简化版本
SGF是一种可以是用于围棋棋谱记录的文本格式,关键的部分大概类似这样:
(;B[cd];W[pq](;B[cq];W[do])(;B[cf];W[pn]))
如果先从简单的模型开始,例如简化成:
(AB(CD)(EF))
要把这样的字符串解析成一棵二叉树(最简单的情况),使用下面的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | #!/usr/bin/env python # -*- coding: utf-8 -*- def make_node(color = '@' , left = {}, right = {}): node = { 'color' : color, 'left' : left, 'right' : right } return node def make_sgf_tree(sgf_str = '', index = [ 0 ], head = make_node()): current_node = head # 遍历字符串 while True : index[ 0 ] + = 1 # 记录字符串被处理的当前位置,技巧:参数修改 # 循环退出条件 if sgf_str[index[ 0 ]] = = ')' : break # 递归处理内层的括号对 elif sgf_str[index[ 0 ]] = = '(' : make_sgf_tree(sgf_str, index, current_node) # 非括号字符作为节点的color else : n = make_node(color = sgf_str[index[ 0 ]]) # 尽量插在树的右边 if not current_node[ 'right' ]: current_node[ 'right' ] = n elif not current_node[ 'left' ]: current_node[ 'left' ] = n else : print 'should NOT be there....' current_node = n # 前序遍历 def tree_pre_trav(head = make_node()): start = head if not start: return print start[ 'color' ], tree_pre_trav(start[ 'left' ]) tree_pre_trav(start[ 'right' ]) # 后序遍历 def tree_post_trav(head = make_node()): start = head if start[ 'left' ]: tree_post_trav(start[ 'left' ]) if start[ 'right' ]: tree_post_trav(start[ 'right' ]) print start[ 'color' ], # 中序遍历 def tree_in_trav(head = make_node()): start = head if start[ 'left' ]: tree_in_trav(start[ 'left' ]) print start[ 'color' ], if start[ 'right' ]: tree_in_trav(start[ 'right' ]) if __name__ = = '__main__' : # sgf_str = '(B(W(BW)(BWB))(WBW))' sgf_str = '(A(B(CD)(EFG))(HIJ))' print 'SGF String: \"' + sgf_str + '\"' sgf_str_index = [ 0 ] head = make_node() make_sgf_tree(sgf_str = sgf_str, index = sgf_str_index, head = head) print '\nThe SGF Tree:' print head print '\nPreorder Traversal:' tree_pre_trav(head) print '\n\nPostorder Traversal:' tree_post_trav(head) print '\n\nInorder Traversal:' tree_in_trav(head) |
输出:
1 2 3 4 5 6 7 8 9 10 11 12 13 | SGF String: "(A(B(CD)(EFG))(HIJ))" The SGF Tree: {'color': '@', 'right': {'color': 'A', 'right': {'color': 'B', 'right': {'color': 'C', 'right': {'color': 'D', 'right': {}, 'left': {}}, 'left': {}}, 'left': {'color': 'E', 'right': {'color': 'F', 'right': {'color': 'G', 'right': {}, 'left': {}}, 'left': {}}, 'left': {}}}, 'left': {'color': 'H', 'right': {'color': 'I', 'right': {'color': 'J', 'right': {}, 'left': {}}, 'left': {}}, 'left': {}}}, 'left': {}} Preorder Traversal: @ A H I J B E F G C D Postorder Traversal: J I H G F E D C B A @ Inorder Traversal: @ H I J A E F G B C D |
应该就是下图的样子:
其实最后得到的代码,不过是将一个表示二叉树的字符串变成一颗二叉树而已。再稍微扩展一下,应该就能解析SGF文件了。再然后,就可以设计一个围棋打谱程序了。
还有一个我之前写的C语言的版本,指针与二叉树,可能适合C语言的思维:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | #include <stdio.h> #include <stdlib.h> struct node { char color; char x; char y; struct node *left; struct node *right; }; // record the beginning of sgf string char *start = NULL; void make_sgf_tree( struct node *head, char *str) { start = str; struct node *current_node = head; while (*start != '\n' ) { start += 1; if (*start == ')' ) break ; else if (*start == '(' ) make_sgf_tree(current_node, start); // 递归,我们都喜欢 else { if (*start == ';' ) { // 围棋动作的开始,期望类似 ;W[ab]... struct node *new_node = ( struct node*) malloc ( sizeof ( struct node)); new_node->color = *(start+1); new_node->x = *(start+3); new_node->y = *(start+4); printf ( "(%c,%c)\n" , new_node->x, new_node->y); start += 5; //FIXME, there is a better way to parse if (current_node->right == NULL) current_node->right = new_node; else if (current_node->left == NULL) current_node->left = new_node; else printf ( "22not children........\n" ); current_node = new_node; } } } } // 前序遍历 void show_tree_pre( struct node *head) { struct node *start = head; if (start != NULL) printf ( "<%c(%c,%c)>\n" , start->color, start->x, start->y); if (start->left != NULL) show_tree_pre(start->left); if (start->right != NULL) show_tree_pre(start->right); } int main() { // 简单的测试,sgf文件的子集,且限定成最简单的二叉树(假定某手棋的变化之多有两种) char *str = "(;W[ab];B[cd](;W[ef];B[ac](;W[ss];B[rr])(;W[gg];B[hh]))(;W[ee];B[bc]))\n" ; printf ( "SGF string: %s" ,str); // 我们把它变成一颗树 struct node *head = ( struct node*) malloc ( sizeof ( struct node)); make_sgf_tree(head, str); // 再前序遍历看看这个树是不是我们想想的样子 printf ( "\npreorder travelsal:\n" ); show_tree_pre(head->right); return 0; } |